Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BBA Adv ; 1: 100002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37082019

RESUMO

Polybia-MP1 is an antimicrobial peptide that shows a decreased activity in membranes with cholesterol (CHO). Since it is now accepted that hopanoids act as sterol-surrogates in some sterol-lacking bacteria, we here inquire about the impact of Polybia-MP1 on membranes containing the hopanoid diplopterol (DP) in comparison to membranes with CHO. We found that, despite the properties induced on lipid membranes by DP are similar to those induced by CHO, the effect of Polybia-MP1 on membranes with CHO or DP was significantly different. DP did not prevent dye release from LUVs, nor the insertion of Polybia-MP1 into monolayers, and peptide-membrane affinity was higher for those with DP than with CHO. Zeta potentials ( ζ ) for DP-containing LUVs showed a complex behavior at increasing peptide concentration. The effect of the peptide on membrane elasticity, investigated by nanotube retraction experiments, showed that peptide addition softened all membrane compositions, but membranes with DP got stiffer at long times. Considering this, and the ζ results, we propose that peptides accumulate at the interface adopting different arrangements, leading to a non-monotonic behavior. Possible correlations with cell membranes were inquired testing the antimicrobial activity of Polybia-MP1 against hopanoid-lacking bacteria pre-incubated with DP or CHO. The fraction of surviving cells was lower in cultures incubated with DP compared to those incubated with CHO. We propose that the higher activity of Polybia-MP1 against some bacteria compared to mammalian cells is not only related to membrane electrostatics, but also the composition of neutral lipids, particularly the hopanoids, could be important.

2.
Biochim Biophys Acta Biomembr ; 1861(12): 183060, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31499020

RESUMO

In recent years, hopanoids, a group of pentacyclic compounds found in bacterial membranes, are in the spotlight since it was proposed that they induce order in lipid membranes in a similar way cholesterol do in eukaryotes, despite their structural differences. We studied here whether diplopterol (an abundant hopanoid) promoted similar effects on model membranes as sterols do. We analyzed the compaction, dynamics, phase segregation, permeability and compressibility of model membranes containing diplopterol, and compared with those containing sterols from animals, plants and fungi. We also tested the effect that the incubation with diplopterol had on hopanoid-lacking bacteria. Our results show that diplopterol induces phase segregation, increases lipid compaction, and decreases permeability on phospholipid membranes, while retaining membrane fluidity and compressibility. Furthermore, the exposition to this hopanoid decreases the permeability of the opportunistic pathogen Pseudomonas aeruginosa and increases the resistance to antibiotics. All effects promoted by diplopterol were similar to those generated by the sterols. Our observations add information on the functional significance of hopanoids as molecules that play an important role in membrane organization and dynamics in model membranes and in a bacterial system.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Membrana Celular/química , Triterpenos/metabolismo , Membrana Celular/fisiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Lipídeos de Membrana/fisiologia , Membranas/química , Membranas/fisiologia , Modelos Biológicos , Permeabilidade , Fosfolipídeos/química , Fosfolipídeos/fisiologia , Pseudomonadaceae/metabolismo , Esteróis/química , Triterpenos/farmacologia
3.
Nucleic Acids Res ; 44(16): 7700-13, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27257069

RESUMO

Translesion DNA polymerases (Pol) function in the bypass of template lesions to relieve stalled replication forks but also display potentially deleterious mutagenic phenotypes that contribute to antibiotic resistance in bacteria and lead to human disease. Effective activity of these enzymes requires association with ring-shaped processivity factors, which dictate their access to sites of DNA synthesis. Here, we show for the first time that the mismatch repair protein MutS plays a role in regulating access of the conserved Y-family Pol IV to replication sites. Our biochemical data reveals that MutS inhibits the interaction of Pol IV with the ß clamp processivity factor by competing for binding to the ring. Moreover, the MutS-ß clamp association is critical for controlling Pol IV mutagenic replication under normal growth conditions. Thus, our findings reveal important insights into a non-canonical function of MutS in the regulation of a replication activity.


Assuntos
DNA Polimerase beta/metabolismo , Replicação do DNA , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Pseudomonas aeruginosa/metabolismo , Biocatálise , DNA/biossíntese , DNA/química , DNA Polimerase III/metabolismo , Etilnitrosoureia , Mutagênese/genética , Peptídeos/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/crescimento & desenvolvimento , Resposta SOS em Genética/genética , Especificidade por Substrato
4.
J Biol Chem ; 291(10): 4928-38, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26709229

RESUMO

Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity.


Assuntos
Pareamento Incorreto de Bases , Proteínas de Ciclo Celular/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Sequência de Bases , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Transativadores/metabolismo
5.
PLoS One ; 8(6): e66236, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762483

RESUMO

nfxB encodes a negative regulator of the mexCD-oprJ genes for drug efflux in the opportunistic pathogen Pseudomonas aeruginosa. Inactivating mutations in this transcriptional regulator constitute one of the main mechanisms of resistance to ciprofloxacin (Cip(r)). In this work, we evaluated the use of nfxB/Cip(r) as a new test system to study mutation spectra in P. aeruginosa. The analysis of 240 mutations in nfxB occurring spontaneously in the wild-type and mutator backgrounds or induced by mutagens showed that nfxB/Cip(r) offers several advantages compared with other mutation detection systems. Identification of nfxB mutations was easy since the entire open reading frame and its promoter region were sequenced from the chromosome using a single primer. Mutations detected in nfxB included all transitions and transversions, 1-bp deletions and insertions, >1-bp deletions and duplications. The broad mutation spectrum observed in nfxB relies on the selection of loss-of-function changes, as we confirmed by generating a structural model of the NfxB repressor and evaluating the significance of each detected mutation. The mutation spectra characterized in the mutS, mutT, mutY and mutM mutator backgrounds or induced by the mutagenic agents 2-aminopurine, cisplatin and hydrogen peroxide were in agreement with their predicted mutational specificities. Additionally, this system allowed the analysis of sequence context effects since point mutations occurred at 85 different sites distributed over the entire nfxB. Significant hotspots and preferred sequence contexts were observed for spontaneous and mutagen-induced mutation spectra. Finally, we demonstrated the utility of a luminescence-based reporter for identification of nfxB mutants previous to sequencing analysis. Thus, the nfxB/Cip(r) system in combination with the luminescent reporter may be a valuable tool for studying mutational processes in Pseudomonas spp. wherein the genes encoding the NfxB repressor and the associated efflux pump are conserved.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Mutação/genética , Pseudomonas aeruginosa/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Proteínas de Bactérias/química , Ciprofloxacina/farmacologia , Proteínas de Ligação a DNA/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Genes Reporter , Luminescência , Modelos Moleculares , Dados de Sequência Molecular , Mutagênicos/toxicidade , Taxa de Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Análise de Sequência de DNA , Fatores de Transcrição/química
6.
DNA Repair (Amst) ; 11(5): 463-9, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22365420

RESUMO

Interaction between MutS and the replication factor ß clamp has been extensively studied in a Mismatch Repair context; however, its functional consequences are not well understood. We have analyzed the role of the MutS-ß clamp interaction in Pseudomonas aeruginosa by characterizing a ß clamp binding motif mutant, denominated MutSß, which does not interact with the replication factor. A detailed characterization of P. aeruginosa strain PAO1 harboring a chromosomal mutSß allele demonstrated that this mutant strain exhibited mutation rates to rifampicin and ciprofloxacin resistance comparable to that of the parental strain. mutSß PAO1 was as proficient as the parental strain for DNA repair under highly mutagenic conditions imposed by the adenine base analog 2-aminopurine. In addition, using a tetracycline resistance reversion assay to assess the repair of a frameshift mutation, we determined that the parental and mutSß strains exhibited similar reversion rates. Our results clearly indicate that the MutS-ß clamp interaction does not have a central role in the methylation-independent Mismatch Repair of P. aeruginosa.


Assuntos
DNA Polimerase III/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Pseudomonas aeruginosa/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , DNA Polimerase III/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Mutação , Taxa de Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/genética
7.
Antimicrob Agents Chemother ; 55(8): 3668-76, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21646492

RESUMO

The rapid emergence of drug resistance upon treatment of Pseudomonas aeruginosa infections with fluoroquinolones is a serious concern. In this study, we report the effect of hypermutability on the mutant selection window for ciprofloxacin (CIP) by comparing the hypermutator MPAO1 mutS and mutT strains with the wild-type strain. The mutant selection window was shifted to higher CIP concentrations for both hypermutators, presenting the mutS strain with a broader selection window in comparison to the wild-type strain. The mutation prevention concentrations (MPC) determined for mutT and mutS strains were increased 2- and 4-fold over the wild-type level, respectively. In addition, we analyzed the molecular bases for resistance in the bacterial subpopulations selected at different points in the window. At the top of the window, the resistant clones isolated were mainly mutated in GyrA and ParC topoisomerase subunits, while at the bottom of the window, resistance was associated with the overexpression of MexCD-OprJ and MexAB-OprM efflux pumps. Accordingly, a greater proportion of multidrug-resistant clones were found among the subpopulations isolated at the lower CIP concentrations. Furthermore, we found that the exposure to CIP subinhibitory concentrations favors the accumulation of cells overexpressing MexCD-OprJ (due to mutations in the transcriptional repressor NfxB) and MexAB-OprM efflux pumps. We discuss these results in the context of the possible participation of this antibiotic in a mutagenic process.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , DNA Girase/genética , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo
8.
DNA Repair (Amst) ; 7(11): 1799-808, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18687413

RESUMO

The Escherichia coli DNA Mismatch Repair (MMR) protein MutS exist as dimers and tetramers in solution, and the identification of its functional oligomeric state has been matter of extensive study. In the present work, we have analyzed the oligomerization state of MutS from Pseudomonas aeruginosa a bacterial species devoid of Dam methylation and MutH homologue. By analyzing native MutS and different mutated versions of the protein, we determined that P. aeruginosa MutS is mainly tetrameric in solution and that its oligomerization capacity is conducted as in E. coli, by the C-terminal region of the protein. The analysis of mismatch oligonucleotide binding activity showed that wild-type MutS binds to DNA as tetramer. The DNA binding activity decreased when the C-terminal region was deleted (MutSDelta798) or when a full-length MutS with tetramerization defects (MutSR842E) was tested. The ATPase activity of MutSDelta798 was similar to MutSR842E and diminished respect to the wild-type protein. Experiments carried out on a P. aeruginosa mutS strain to test the proficiency of different oligomeric versions of MutS to function in vivo showed that MutSDelta798 is not functional and that full-length dimeric version MutSR842E, is not capable of completely restoring the MMR activity of the mutant strain. Additional experiments carried out in conditions of high mutation rate induced by the base analogue 2-AP confirm that the dimeric version of MutS is not as efficient as the tetrameric wild-type protein to prevent mutations. Therefore, it is concluded that although dimeric MutS is sufficient for MMR activity, optimal activity is obtained with the tetrameric version of the protein and therefore it should be considered as the active form of MutS in P. aeruginosa.


Assuntos
Pareamento Incorreto de Bases , Reparo do DNA , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Oligonucleotídeos/química , Plasmídeos/metabolismo , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
9.
Environ Sci Technol ; 41(11): 4071-6, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17612192

RESUMO

Significant effort has been directed in recent times to the use of plants to extract and detoxify nitroaromatics from polluted industrial facilities. We have explored the possibility of overcoming the phytotoxicity of the highly toxic and recalcitrant nitroderivative 2,4-dinitrotoluene (2,4-DNT) by expressing a cyanobacterial flavodoxin (Fld) in tobacco plants. We demonstrate here that transformants accumulating Fld in plastids display a remarkable increase in the ability to tolerate, take up, and transform 2,4-DNT, as compared to their wild-type siblings. We also show that Fld mediates one-electron reduction of 2,4-DNT in the presence of oxygen and especially in anaerobiosis. Moreover, Fld-loaded chloroplasts are able to convert 2,4-DNT into its aminoderivatives in the presence of light. The results suggest that expression of Fld in landscape plants could facilitate effective cleanup of sites contaminated with this class of pollutants.


Assuntos
Dinitrobenzenos/metabolismo , Flavodoxina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poluentes do Solo/metabolismo , Biotransformação , Cloroplastos/metabolismo , Flavodoxina/genética
10.
Talanta ; 68(5): 1671-6, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18970513

RESUMO

In this work, we demonstrate for the first time that 4-methyl-5-nitrocatechol (4M5NC) and 2,4,5-trihydroxytoluene (2,4,5-THT), two compounds obtained from the 2,4-DNT biodegradation are recognized by polyphenol oxidase as substrates. An amperometric biosensor is described for detecting these compounds and for evaluating the efficiency of the 2,4-DNT conversion into 4M5NC in the presence of bacteria able to produce the 2,4-DNT-biotransformation. The biosensor format involves the immobilization of polyphenol oxidase into a composite matrix made of glassy carbon microspheres and mineral oil. The biosensor demonstrated to be highly sensitive for the quantification of 4M5NC and 2,4,5-THT. The analytical parameters for 4M5NC are the following: sensitivity of (7.5+/-0.1)x10(5)nAM(-1), linear range between 1.0x10(-5) and 8.4x10(-5)M, and detection limit of 4.7x10(-6)M. The sensitivity for the determination of 2,4,5-THT is (6.2+/-0.6)x10(6)nAM(-1), with a linear range between 1.0x10(-6) and 5.8x10(-6)M, and a detection limit of 2.0x10(-7). Under the experimental conditions, it was possible to selectively quantify 4M5NC even in the presence of a large excess of 2,4-DNT. The suitability of the biosensor for detecting the efficiency of 2,4-DNT biotransformation into 4M5NC is demonstrated and compared with HPLC-spectrophotometric detection, with very good correlation. This biosensor holds great promise for decentralized environmental testing of 2,4-DNT.

11.
Appl Environ Microbiol ; 71(12): 8864-72, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16332883

RESUMO

Using the genes encoding the 2,4-dinitrotoluene degradation pathway enzymes, the nonpathogenic psychrotolerant rhizobacterium Pseudomonas fluorescens ATCC 17400 was genetically modified for degradation of this priority pollutant. First, a recombinant strain designated MP was constructed by conjugative transfer from Burkholderia sp. strain DNT of the pJS1 megaplasmid, which contains the dnt genes for 2,4-dinitrotoluene degradation. This strain was able to grow on 2,4-dinitrotoluene as the sole source of carbon, nitrogen, and energy at levels equivalent to those of Burkholderia sp. strain DNT. Nevertheless, loss of the 2,4-dinitrotoluene degradative phenotype was observed for strains carrying pJS1. The introduction of dnt genes into the P.fluorescens ATCC 17400 chromosome, using a suicide chromosomal integration Tn5-based delivery plasmid system, generated a degrading strain that was stable for a long time, which was designated RE. This strain was able to use 2,4-dinitrotoluene as a sole nitrogen source and to completely degrade this compound as a cosubstrate. Furthermore, P. fluorescens RE, but not Burkholderia sp. strain DNT, was capable of degrading 2,4-dinitrotoluene at temperatures as low as 10 degrees C. Finally, the presence of P. fluorescens RE in soils containing levels of 2,4-dinitrotoluene lethal to plants significantly decreased the toxic effects of this nitro compound on Arabidopsis thaliana growth. Using synthetic medium culture, P. fluorescens RE was found to be nontoxic for A.thaliana and Nicotiana tabacum, whereas under these conditions Burkholderia sp. strain DNT inhibited A.thaliana seed germination and was lethal to plants. These features reinforce the advantageous environmental robustness of P. fluorescens RE compared with Burkholderia sp. strain DNT.


Assuntos
Burkholderia/genética , Dinitrobenzenos/farmacocinética , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Biodegradação Ambiental , Burkholderia/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética/métodos , Plasmídeos , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...